八年級數(shù)學教案
作為一名教職工,很有必要精心設計一份教案,教案是實施教學的主要依據(jù),有著至關重要的作用。那要怎么寫好教案呢?以下是小編整理的八年級數(shù)學教案,僅供參考,希望能夠幫助到大家。

八年級數(shù)學教案1
一、教學目標:
1、知道負整數(shù)指數(shù)冪=(a≠0,n是正整數(shù))、
2、掌握整數(shù)指數(shù)冪的運算性質(zhì)、
3、會用科學計數(shù)法表示小于1的數(shù)、
二、教學重點:
掌握整數(shù)指數(shù)冪的運算性質(zhì)、
三、難點:
會用科學計數(shù)法表示小于1的數(shù)、
四、情感態(tài)度與價值觀:
通過學習課堂知識使學生懂得任何事物之間是相互聯(lián)系的,理論來源于實踐,服務于實踐、能利用事物之間的類比性解決問題、
五、教學過程:
。ㄒ唬┱n堂引入
1、回憶正整數(shù)指數(shù)冪的運算性質(zhì): (1)同底數(shù)的冪的乘法:am?an = am+n (m,n是正整數(shù)); (2)冪的乘方:(am)n = amn (m,n是正整數(shù)); (3)積的乘方:(ab)n = anbn (n是正整數(shù)); (4)同底數(shù)的冪的除法:am÷an = am?n ( a≠0,m,n是正整數(shù),m>n); (5)商的乘方:()n = (n是正整數(shù));
2、回憶0指數(shù)冪的規(guī)定,即當a≠0時,a0 = 1、
3、你還記得1納米=10?9米,即1納米=米嗎?
4、計算當a≠0時,a3÷a5 ===,另一方面,如果把正整數(shù)指數(shù)冪的運算性質(zhì)am÷an = am?n (a≠0,m,n是正整數(shù),m>n)中的m>n這個條件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0)、
。ǘ┛偨Y: 一般地,數(shù)學中規(guī)定: 當n是正整數(shù)時,=(a≠0)(注意:適用于m、n可以是全體整數(shù)) 教師啟發(fā)學生由特殊情形入手,來看這條性質(zhì)是否成立、 事實上,隨著指數(shù)的取值范圍由正整數(shù)推廣到全體整數(shù),前面提到的運算性質(zhì)都可推廣到整數(shù)指數(shù)冪;am?an = am+n (m,n是整數(shù))這條性質(zhì)也是成立的.、
。ㄈ┛茖W記數(shù)法:
我們已經(jīng)知道,一些較大的數(shù)適合用科學記數(shù)法表示,有了負整數(shù)指數(shù)冪后,小于1的正數(shù)也可以用科學記數(shù)法來表示,例如:0.000012 = 1.2×10?5.即小于1的正數(shù)可以用科學記數(shù)法表示為a×10?n的形式,其中a是整數(shù)位數(shù)只有1位的正數(shù),n是正整數(shù)、 啟發(fā)學生由特殊情形入手,比如0.012 = 1.2×10?2.0、0012 = 1.2×10?3,0、00012 = 1.2×10?4,以此發(fā)現(xiàn)其中的規(guī)律,從而有0.0000000012 = 1.2×10?9,即對于一個小于1的正數(shù),如果小數(shù)點后到第一個非0數(shù)字前有8個0,用科學記數(shù)法表示這個數(shù)時,10的指數(shù)是?9,如果有m個0,則10的指數(shù)應該是?m?1、
八年級數(shù)學教案2
一、教學目標
、俳(jīng)歷探索整式除法運算法則的過程,會進行簡單的整式除法運算(只要求單項式除以單項式,并且結果都是整式),培養(yǎng)學生獨立思考、集體協(xié)作的能力。
②理解整式除法的算理,發(fā)展有條理的思考及表達能力。
二、教學重點與難點
重點:整式除法的運算法則及其運用。
難點:整式除法的運算法則的推導和理解,尤其是單項式除以單項式的運算法則。
三、教學準備
卡片及多媒體課件。
四、教學設計
。ㄒ唬┣榫骋
教科書第161頁問題:木星的質(zhì)量約為1。90×1024噸,地球的質(zhì)量約為5。98×1021噸,你知道木星的質(zhì)量約為地球質(zhì)量的多少倍嗎?
重點研究算式(1。90×1024)÷(5。98×1021)怎樣進行計算,目的是給出下面兩個單項式相除的模型。
注:教科書從實際問題引入單項式的除法運算,學生在探索這個問題的過程中,將自然地體會到學習單項式的除法運算的必要性,了解數(shù)學與現(xiàn)實世界的聯(lián)系,同時再次經(jīng)歷感受較大數(shù)據(jù)的過程。
。ǘ┨骄啃轮
(1)計算(1。90×1024)÷(5。98×1021),說說你計算的根據(jù)是什么?
(2)你能利用(1)中的方法計算下列各式嗎?
8a3÷2a;6x3y÷3xy;12a3b2x3÷3ab2。
(3)你能根據(jù)(2)說說單項式除以單項式的運算法則嗎?
注:教師可以鼓勵學生自己發(fā)現(xiàn)系數(shù)、同底數(shù)冪的底數(shù)和指數(shù)發(fā)生的變化,并運用自己的`語言進行描述。
單項式的除法法則的推導,應按從具體到一般的步驟進行。探究活動的安排,是使學生通過對具體的特例的計算,歸納出單項式的除法運算性質(zhì),并能運用乘除互逆的關系加以說明,也可類比分數(shù)的約分進行。在這些活動過程中,學生的化歸、符號演算等代數(shù)推理能力和有條理的表達能力得到進一步發(fā)展。重視算理算法的滲透是新課標所強調(diào)的。
(三)歸納法則
單項式相除,把系數(shù)與同底數(shù)冪分別相除作為商的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式。
注:通過總結法則,培養(yǎng)學生的概括能力,養(yǎng)成用數(shù)學語言表達自己想法的數(shù)學學習習慣。
。ㄋ模⿷眯轮
例2計算:
。1)28x4y2÷7x3y;
。2)—5a5b3c÷15a4b。
首先指明28x4y2與7x3y分別是被除式與除式,在這兒省去了括號。對本例可以采用學生口述,教師板書的形式完成?谑龊桶鍟紤⒁庹故痉▌t的應用,計算過程要詳盡,使學生盡快熟悉法則。
注:單項式除以單項式,既要對系數(shù)進行運算,又要對相同字母進行指數(shù)運算,同時對只在一個單項式里含有的冪要加以注意,這些對剛剛接觸整式除法的學生來講,難免會出現(xiàn)照看不全的情況,所以更應督促學生細心解答問題。
鞏固新知教科書第162頁練習1及練習2。
學生自己嘗試完成計算題,同桌交流。
注:在獨立解題和同伴的相互交流過程中讓學生自己去體會法則、掌握法則,印象更為深刻,也有助于培養(yǎng)學生良好的思維習慣和主動參與學習的習慣。
。ㄎ澹┳鳂I(yè)
1、必做題:教科書第164頁習題15。3第1題;第2題。
2、選做題:教科書第164頁習題15。3第8題
八年級數(shù)學教案3
一、教學目的
1、 使學生熟練地運用等腰三角形的性質(zhì)求等腰三角形內(nèi)角的角度。
2、 熟識等邊三角形的性質(zhì)及判定、
2、通過例題教學,幫助學生總結代數(shù)法求幾何角度,線段長度的方法。
二、教學重點
等腰三角形的性質(zhì)及其應用。
三、教學難點
簡潔的邏輯推理。
四、教學過程
。ㄒ唬⿵土曥柟
1、敘述等腰三角形的性質(zhì),它是怎么得到的?
等腰三角形的兩個底角相等,也可以簡稱等邊對等角。把等腰三角形對折,折疊兩部分是互相重合的,即AB與AC重合,點B與點 C重合,線段BD與CD也重合,所以C。
等腰三角形的頂角平分線,底邊上的中線和底邊上的高線互相重合,簡稱三線合一。由于AD為等腰三角形的對稱軸,所以BD= CD,AD為底邊上的中線;BAD=CAD,AD為頂角平分線,ADB=ADC=90,AD又為底邊上的高,因此三線合一。
2、若等腰三角形的兩邊長為3和4,則其周長為多少?
。ǘ┬抡n
在等腰三角形中,有一種特殊的情況,就是底邊與腰相等,這時,三角形三邊都相等。我們把三條邊都相等的三角形叫做等邊三角形。
等邊三角形具有什么性質(zhì)呢?
1、請同學們畫一個等邊三角形,用量角器量出各個內(nèi)角的`度數(shù),并提出猜想。
2、你能否用已知的知識,通過推理得到你的猜想是正確的?
等邊三角形是特殊的等腰三角形,由等腰三角形等邊對等角的性質(zhì)得到B=C,又由B+C=180,從而推出B=C=60。
3、上面的條件和結論如何敘述?
等邊三角形的各角都相等,并且每一個角都等于60。
等邊三角形是軸對稱圖形嗎?如果是,有幾條對稱軸?
等邊三角形也稱為正三角形。
例1、在△ABC中,AB=AC,D是BC邊上的中點,B=30,求1和ADC的度數(shù)。
分析:由AB=AC,D為BC的中點,可知AB為 BC底邊上的中線,由三線合一可知AD是△ABC的頂角平分線,底邊上的高,從而ADC=90,BAC,由于B=30,BAC可求,所以1可求。
問題1:本題若將D是BC邊上的中點這一條件改為AD為等腰三角形頂角平分線或底邊BC上的高線,其它條件不變,計算的結果是否一樣?
問題2:求1是否還有其它方法?
(三)練習鞏固
1、判斷下列命題,對的打,錯的打。
a、等腰三角形的角平分線,中線和高互相重合( )
b、有一個角是60的等腰三角形,其它兩個內(nèi)角也為60( )
2、如圖(2),在△ABC中,已知AB=AC,AD為BAC的平分線,且2=25,求ADB和B的度數(shù)。
(四)小結
由等腰三角形的性質(zhì)可以推出等邊三角形的各角相等,且都為60。三線合一性質(zhì)在實際應用中,只要推出其中一個結論成立,其他兩個結論一樣成立,所以關鍵是尋找其中一個結論成立的條件。
。ㄎ澹┳鳂I(yè)
1、課本P127─7,9
2、補充:如圖(3),△ABC是等邊三角形,BD、CE是中線,求CBD,BOE,BOC,
EOD的度數(shù)。
(一)課本P127─1、3、4、8題、
【八年級數(shù)學教案】相關文章:
八年級數(shù)學教案最新10-24
八年級數(shù)學教案15篇10-22
八年級數(shù)學教案(15篇)11-21
八年級數(shù)學教案初中八年級數(shù)學上冊教案07-12
華東師大版八年級下冊數(shù)學教案09-02
北師大版八年級上冊數(shù)學教案優(yōu)秀11-19
數(shù)學教案11-09
對稱的數(shù)學教案11-01