亚洲国产日韩欧美在线a乱码,国产精品路线1路线2路线,亚洲视频一区,精品国产自,www狠狠,国产情侣激情在线视频免费看,亚洲成年网站在线观看

等腰三角形的性質(zhì)教案

時間:2025-10-20 00:13:40 教案

等腰三角形的性質(zhì)教案

  作為一位無私奉獻的人民教師,時常要開展教案準備工作,編寫教案助于積累教學(xué)經(jīng)驗,不斷提高教學(xué)質(zhì)量。教案應(yīng)該怎么寫才好呢?下面是小編幫大家整理的等腰三角形的性質(zhì)教案,歡迎大家借鑒與參考,希望對大家有所幫助。

等腰三角形的性質(zhì)教案

  【教學(xué)目標】

  1、了解等腰三角形的有關(guān)概念;

  2、掌握等腰三角形的性質(zhì)定理;

  3、能運用等腰三角形的性質(zhì)定理進行簡單的計算和證明。

  4、掌握并運用等邊三角形的性質(zhì)進行計算和證明。

  教學(xué)重點:掌握和應(yīng)用等腰三角形的性質(zhì)。

  教學(xué)難點:

  1、等腰三角形性質(zhì)的符號表示;

  2、能靈活運用等腰三角形的性質(zhì)。

  【教學(xué)策略】在探究等腰三角形的性質(zhì)時,通過剪等腰三角形、折等腰三角形等探究活動,讓學(xué)生利用對稱軸的知識分析、觀察、歸納出等腰三角形的性質(zhì)。再通過練習(xí),讓學(xué)生知道等腰三角形性質(zhì)的符合表示,加深學(xué)生對等腰三角形性質(zhì)的理解,并讓學(xué)生在練習(xí)中學(xué)會靈活運用等腰三角形的性質(zhì),進一步培養(yǎng)學(xué)生的知識遷移能力。

  教學(xué)媒體的選擇和設(shè)計:多媒體、課件、量角器、長方形紙片、剪刀。

  【學(xué)情分析】通過七年級的學(xué)習(xí),學(xué)生已有平面圖形的知識,為了更好地認識生活中的圖形,本節(jié)課學(xué)生在探究活動以后直接對操作活動的過程和結(jié)果作分析與總結(jié),經(jīng)過這些抽象的思維活動,形成新的數(shù)學(xué)知識,增加了學(xué)習(xí)過程的趣味性和實踐性。

  【教學(xué)過程】

  一、 課前延伸。

  二、課內(nèi)探究

  (一)創(chuàng)設(shè)情境

  同學(xué)們看這些圖片中抽象出的平面幾何圖形(如房屋的鋼梁架、紅領(lǐng)巾、交通標志的外沿形狀等),它們有什么共同特點。

  生:它們是軸對稱圖形,都有兩條邊相等,有兩個底角相等,它們是等腰三角形。

  (二)引入新課

  這就是我們今天所要學(xué)習(xí)的等腰三角形。

  師:我們把兩邊相等的三角形叫等腰三角形。

  學(xué)生自學(xué)等腰三角形的要素并完成下面的練習(xí)。

  非常好,那么將剛才你所得到的三角形是等腰三角形嗎。

 。ㄊ牵

  為什么。

  生:對折后兩邊能夠完全重合。(教師動手操作)

  (合作探究,得出結(jié)論)

  探究:

  1、等腰三角形ABC是軸對稱圖形嗎。

  對稱軸是什么。

  生:回答各異

  師:針對學(xué)生的回答給予糾正。

  2、∠B與∠C相等嗎。

  你能用自己的語言概括你發(fā)現(xiàn)的結(jié)論嗎。

  生:等腰三角形的兩個底角相等。

  生說明理由(a、有折疊得到b、有測量得得到c、由證三角形全等得到)如何通過三角形全等得到呢。

  教師出示:已知:如圖:△ABC中,AB=AC,求證:∠B=∠C

  回憶剛才的折疊過程,折痕把三角形的分成了兩個怎樣的三角形,折痕與∠BAC之間有什么關(guān)系。與BC呢。

  (四)理論證明

  法一、做AD平分∠BAC,交BC于D

  法二、取BC中點D,連接AD

  法三、過A點做AD⊥BC垂足為D

  學(xué)生說出證明方法。

  這就是等腰三角形的性質(zhì)定理:等腰三角形的兩個底角相等(簡稱等邊對等角)應(yīng)用這一性質(zhì)完成以下練習(xí)

  3、你能總結(jié)一下折痕所在的直線AD具有的性質(zhì)嗎。

  直線AD平分∠BAC、直線AD垂直平分BC

  你能用自己的語言概括你發(fā)現(xiàn)的結(jié)論嗎。

  等腰三角形頂角的平分線,底邊的中線、高線互相重合。

  怎樣證明呢。

  學(xué)生說出方法。

  這就是等腰三角形頂角的平分線,底邊的中線、高線互相重合的幾何書寫。簡稱三線合一。

  性質(zhì)總結(jié):等腰三角形是軸對稱圖形。等腰三角形的對稱軸是a、底邊的垂直平分線。 可以怎么說:

  b、底邊的中線所在的直線;

  c、底邊上的高所在的直線;

  d、頂角的平分線所在的直線;

 。3)小組探究

  性質(zhì)2:等腰三角形的頂角的平分線,底邊上的中線,底邊上的高互相重合。(簡稱“三線合一”)

  用符號語言表示為: (據(jù)課件展示圖填寫)

  在△ABC中,AB=AC,點D在BC上

  1、∵AD⊥BC

  ∴∠ =∠ ,____= 。

  2、∵AD是中線,∴ ⊥ ,∠ =∠ 。

  3、∵AD是角平分線,∴ ⊥ , = 。

  (五)精講點撥

  1、性質(zhì)的應(yīng)用(例題評講)

  例一:在等腰△ABC中,AB=AC,∠A=50°,則∠B=_____,∠C=______

  變式練習(xí):

  1、在等腰中,∠A=50°,則∠B=___,∠C=___

  2、在等腰中,∠A=100°,則∠B=___,∠C=___

  點撥:此例題的重點是運用等腰三角形“等邊對等角”這一性質(zhì)和三角形的內(nèi)角和,突出頂角和底角的關(guān)系,如例一,比較容易得出正確結(jié)果,對變式練習(xí)

 。1)容易漏解,把變式題與例一進行比較兩題的條件,認識等腰三角形在沒有明確頂角和底角時,應(yīng)分類討論:變式1(如圖)①當∠A=50°為頂角時,則∠B=65°,∠C=65°。②當∠A=50°為底角時,則∠B=50°,∠C=80°;或∠B=80°,∠C=50°。變式2①當∠A=100°為頂角時,則∠B=40°,∠C=40°。②當∠A=100°為底角時,則△ABC不存在。由此得出,等腰三角形中已知一個角可以求出另兩個角(頂角和底角的取值范圍:0°<頂角<180°,0°<底角<90°)。

  2、例二:在等腰△ABC中,AB=5,AC=6,則△ABC的周長=_______

  點撥:此例題的重點是運用等腰三角形的定義,以及等腰三角形腰和底邊的關(guān)系,并強調(diào)在沒有明確腰和底邊時,應(yīng)該分兩種情況討論。如例二,①當AB=5為腰時,則三邊為5,5,6;②當AB=5為底時,則三邊為6,6,5。變式練習(xí)①:當AB=5為腰時,三邊為5,5,12;②當AB=5為底時,三邊為12,12,5。

  師:三邊相等的三角形叫做等邊三角形。

  等邊三角形是特殊的等腰三角形,因此等腰三角形的所有的性質(zhì)都適合等邊三角形。

  等邊三角形作為特殊的等腰三角形,它的又具有自己的特有的性質(zhì)。如等邊三角形的三個內(nèi)角具有什么關(guān)系呢。如何證明。已知:如圖,在△ABC中,AB=BC = AC.

  求證: ∠A= ∠B=∠C=60°.

  學(xué)生說出證明過程,應(yīng)用這一性質(zhì)完成例題

  如圖,△ABC是等邊三角形,D是BC的中點,點E在AC上,且AE=AD,求∠EDC

  點撥:本題中的一個等腰三角形和一個等邊三角形。應(yīng)用本節(jié)所學(xué)的等邊三角形的性質(zhì)、等腰三角形的兩個性質(zhì)來完成。

  例2:

  如圖,在△ABC中, AB=AC,BD,CE 分別為∠ABC,∠ACB 的平分線。

  求證:BD=CE.

  評析:此題運用等腰三角形的性質(zhì)幫助學(xué)生寫好書寫格式。兩種方法來解題。

  如圖△ABC是一個屋頂?shù)钠矫媸疽鈭D,已知屋椽AB=AC,立柱AD⊥BC,底角∠B=40°,梁長BC=10米,則頂架上∠CAD=______度,BD=_____米.

  評析:此題在實際生活中充分運用等腰三角形的性質(zhì)(等邊對等角)和三角形的內(nèi)角和這兩個知識點,培養(yǎng)學(xué)生知識的靈活運用,充分體現(xiàn)理論與實際相結(jié)合。

 。┱n后提升

  如圖,在△ABC中, AB=AC ,點D在AC邊上,且BD=BC=AD,(1)圖中有幾個等腰三角形。

 。2)求△ABC各角的度數(shù).

  建筑工人在蓋房子的時候,要看房梁是否水平,可以用一塊等腰三角形放在梁上,從頂點系一重物,如果系重物的繩子正好經(jīng)過三角板的底邊中點,那么房梁就是水平的,為什么。

  六、課堂小結(jié)(播放視頻)

  我能說:

  通過本節(jié)課的學(xué)習(xí),我的收獲是

  我的困惑是 。

  【教學(xué)反思】

  1、在等腰三角形的性質(zhì)教學(xué)中,我們還可以充分利用垂直平分線和角平分線的知識,首先復(fù)習(xí)回顧線段的垂直平分線和角平分線的知識,并加以適當?shù)木毩?xí),然后讓學(xué)生動手“畫一畫”等腰三角形的頂角的角平分線,底邊的中線和高,發(fā)現(xiàn)等腰三角形“三線合一”的性質(zhì),動手“量一量”等腰三角形兩個底角的度數(shù),發(fā)現(xiàn)等腰三角形底角相等的性質(zhì)。

  2、在等腰三角形的性質(zhì)探究過程中,應(yīng)以學(xué)生為主體,積極鼓勵學(xué)生去探索,讓學(xué)生全面參與到知識的發(fā)現(xiàn)過程中。

  根據(jù)學(xué)生的實際情況,在教學(xué)過程中可以對等腰三角形“三線合一”、“等角對等邊”的性質(zhì)給予證明,不僅提高學(xué)生對等腰三角形性質(zhì)的理性認識,而且培養(yǎng)學(xué)生的數(shù)學(xué)推理能力。

【等腰三角形的性質(zhì)教案】相關(guān)文章:

《小數(shù)的性質(zhì)》教案11-19

雙曲線的幾何性質(zhì)教案09-29

分數(shù)的基本性質(zhì)的教案10-09

不等式的性質(zhì)教案01-23

分數(shù)的基本性質(zhì)教案04-04

小數(shù)的意義和性質(zhì)教學(xué)教案12-26

數(shù)學(xué)小數(shù)的意義和性質(zhì)教案12-21

減法的運算性質(zhì)教案(通用23篇)03-05

化學(xué)《金屬的化學(xué)性質(zhì)》教案02-02