- 相關(guān)推薦
初中數(shù)學(xué)七年級《絕對值》說課稿模板(精選10篇)
作為一位無私奉獻(xiàn)的人民教師,時常需要編寫說課稿,編寫說課稿是提高業(yè)務(wù)素質(zhì)的有效途徑。那么寫說課稿需要注意哪些問題呢?下面是小編為大家整理的初中數(shù)學(xué)七年級《絕對值》說課稿模板,歡迎大家分享。

初中數(shù)學(xué)七年級《絕對值》說課稿 1
【說教材】
《絕對值》是七年級數(shù)學(xué)教材上冊1.2.4節(jié)內(nèi)容。在此之前,學(xué)生已學(xué)習(xí)了有理數(shù),數(shù)軸與相反數(shù)等基礎(chǔ)內(nèi)容,這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。絕對值不僅可以使學(xué)生加深對有理數(shù)的認(rèn)識,還為以后學(xué)習(xí)兩個負(fù)數(shù)的比較大小以及有理數(shù)的運(yùn)算作好必要的準(zhǔn)備!所以說本講內(nèi)容在有理數(shù)這一節(jié)中,占據(jù)了一個承上啟下的位置。
【說教學(xué)目標(biāo)】
根據(jù)新課標(biāo)的要求及七年級學(xué)生的認(rèn)知水平我特制定的本節(jié)課的教學(xué)目標(biāo)如下:
1、知識目標(biāo):
1)使學(xué)生了解絕對值的表示法,會計算有理數(shù)的絕對值。
2)能利用數(shù)形結(jié)合思想來理解絕對值的幾何定義;理解絕對值非負(fù)的意義。
3)能利用分類討論思想來理解絕對值的代數(shù)定義;理解字母a的任意性。
2、能力目標(biāo):
通過教學(xué)初步培養(yǎng)學(xué)生分析問題,解決實際問題,讀圖分析、收集處理信息、團(tuán)結(jié)協(xié)作、語言表達(dá)的能力,以及通過師生雙邊活動,初步培養(yǎng)學(xué)生運(yùn)用知識的能力,培養(yǎng)學(xué)生加強(qiáng)理論聯(lián)系實際的能力。
3、思想目標(biāo):
通過對絕對值的教學(xué),讓學(xué)生初步認(rèn)識到數(shù)學(xué)知識來源于實踐,引導(dǎo)學(xué)生從現(xiàn)實生活的經(jīng)歷與體驗出發(fā),激發(fā)學(xué)生對數(shù)學(xué)問題的興趣,使學(xué)生了解數(shù)學(xué)知識的功能與價值,形成主動學(xué)習(xí)的態(tài)度。
【說重點(diǎn)難點(diǎn)】
本課中絕對值的兩種定義是重點(diǎn),絕對值的代數(shù)定義是本課的難點(diǎn),其理論依據(jù)是如何突破絕對值符號里字母a的任意性這一難點(diǎn),由于學(xué)生年齡小,解決實際問題能力弱,對數(shù)學(xué)分類討論思想理解難度大。
【說教法學(xué)法】
教法
(一)教學(xué)手段:
由于七年級學(xué)生的理解能力和思維特征,他們往往需要依賴直觀具體形象的圖形的年齡特點(diǎn),以及七年級學(xué)生剛剛學(xué)習(xí)有理數(shù)中的正負(fù)數(shù),相反數(shù),對正負(fù)數(shù),相反數(shù)的概念理解不一定很深刻,許多學(xué)生容易造成知識遺忘,也為使課堂生動、有趣、高效,特將整節(jié)課以觀察、思考、討論貫穿于整個教學(xué)環(huán)節(jié)之中,采用啟發(fā)式教學(xué)法和師生互動式教學(xué)模式,注意師生之間的情感交流,并教給學(xué)生“多觀察、動腦想、大膽猜、勤鉆研”的研討式學(xué)習(xí)方法。教學(xué)中積極利用多媒體課件,向?qū)W生提供更多的活動機(jī)會和空間,使學(xué)生在動腦、動手的過程中獲得充足的體驗和發(fā)展,從而培養(yǎng)學(xué)生的'數(shù)形結(jié)合的思想。
為充分發(fā)揮學(xué)生的主體性和教師的主導(dǎo)輔助作用,教學(xué)過程中我設(shè)計了七個教學(xué)環(huán)節(jié):
1、溫故知新,激發(fā)情趣;2、得出定義,揭示內(nèi)涵
3、手腦并用,深入理解;4、啟發(fā)誘導(dǎo),初步運(yùn)用
5、反饋矯正,注重參與;6、歸納小結(jié),強(qiáng)化思想
7、布置作業(yè),引導(dǎo)預(yù)習(xí)
(二)教學(xué)方法及其理論依據(jù):
堅持“以學(xué)生為主體,以教師為主導(dǎo)”的原則,即“以學(xué)生活動為主,教師講述為輔,學(xué)生活動在前,教師點(diǎn)撥評價在后”的原則,根據(jù)七年級學(xué)生的心理發(fā)展規(guī)律,聯(lián)系實際安排教學(xué)內(nèi)容。采用學(xué)生參與程度高的學(xué)導(dǎo)式討論教學(xué)法。在學(xué)生看書、討論基礎(chǔ)上,在教師啟發(fā)引導(dǎo)下,運(yùn)用問題解決式教學(xué)法,師生交談法、問答法、課堂討論法,引導(dǎo)學(xué)生來理解教材中的理論知識。在采用問答法時,特別注重不同難度的問題,提問不同層次的學(xué)生,面向全體,使基礎(chǔ)差的學(xué)生也能有表現(xiàn)的機(jī)會,培養(yǎng)其自信心,激發(fā)其學(xué)習(xí)熱情。有效地開發(fā)各層次學(xué)生的潛在智能,力求使每個學(xué)生都能在原有的基礎(chǔ)上得到發(fā)展。同時通過課堂練習(xí)和課后作業(yè),啟發(fā)學(xué)生從書本知識回到社會實踐,學(xué)以致用,落實教學(xué)目標(biāo)。
學(xué)法
1、知識掌握上,七年級學(xué)生剛剛學(xué)習(xí)有理數(shù)中的相反數(shù),對相反數(shù)的概念理解不一定很深刻,許多學(xué)生容易造成知識遺忘,所以應(yīng)全面系統(tǒng)的去講述。
2、學(xué)生學(xué)習(xí)本節(jié)課的知識障礙。學(xué)生對絕對值兩種概念,不易理解,容易出錯,所以教學(xué)中教師應(yīng)予以簡單明白、深入淺出的分析。
3、由于七年級學(xué)生的理解能力和思維特征和生理特征,學(xué)生好動性,注意力易分散,愛發(fā)表見解,希望得到老師的表揚(yáng)等特點(diǎn),所以在教學(xué)中應(yīng)抓住學(xué)生這一生理心理特點(diǎn),一方面要運(yùn)用多媒體課件,引發(fā)學(xué)生的興趣,使他們的注意力始終集中在課堂上;另一方面要創(chuàng)造條件和機(jī)會,讓學(xué)生發(fā)表見解,發(fā)揮學(xué)生學(xué)習(xí)的主動性。
4、心理上,學(xué)生對數(shù)學(xué)課的重視與興趣,老師應(yīng)抓住這有利因素,引導(dǎo)學(xué)生認(rèn)識到數(shù)學(xué)課的科學(xué)性,學(xué)好數(shù)學(xué)有利于其他學(xué)科的學(xué)習(xí)以及學(xué)科知識的滲透性。
【說教學(xué)程序】
(一)溫故知新,激發(fā)情趣:
首先打出第一張幻燈片復(fù)習(xí)提問:什么叫做相反數(shù)?學(xué)生回答后讓大家討論:你能找出互為相反數(shù)的兩個數(shù)在數(shù)軸上表示的點(diǎn)的共同特點(diǎn)嗎?學(xué)生會積極回答第一個問題,但第二個問題學(xué)生可能難以準(zhǔn)確回答,于是打出第二張幻燈片引導(dǎo)學(xué)生仔細(xì)觀察,認(rèn)真思考。從而引出課題:絕對值。結(jié)合實例使學(xué)生以輕松愉快的心情進(jìn)入了本節(jié)課的學(xué)習(xí),也使學(xué)生體會到數(shù)學(xué)來源于實踐,同時對新知識的學(xué)習(xí)有了期待,為順利完成教學(xué)任務(wù)作了思想上的準(zhǔn)備。
(二)得出定義,揭示內(nèi)涵:
由于學(xué)生是第一次接觸絕對值這樣比較深奧的數(shù)學(xué)名詞,所以我利用數(shù)軸在第三張幻燈片里直接給出絕對值的幾何定義:一般地,數(shù)軸上表示數(shù)a的點(diǎn)與原點(diǎn)的距離叫做數(shù)a的絕對值,(absolute value)這個定義學(xué)生接受起來比較容易。
給出定義后引導(dǎo)學(xué)生討論:“定義里的數(shù)a可以表示什么樣的數(shù)?
(通過教師的親切的語言啟發(fā)學(xué)生,以培養(yǎng)師生間的默契)通過討論由師生共同得到:絕對值定義里的數(shù)a可以是正數(shù),負(fù)數(shù)和0。
然后再回到第一張幻燈片里提出的問題:互為相反數(shù)的兩個數(shù)的絕對值有什么關(guān)系?
(三)手腦并用,深入理解:
1、在上一環(huán)節(jié)與學(xué)生一起理解了絕對值的定義后,我再提出問題:如何由文字語言向數(shù)學(xué)符號語言的轉(zhuǎn)化,即如何簡單地標(biāo)記絕對值,而不用漢字?在此不用提問學(xué)生,采取自問自答形式給出絕對值的記法。
2、為進(jìn)一步強(qiáng)化概念,在對絕對值有了正確認(rèn)識的基礎(chǔ)上,請學(xué)生做教材的課堂練習(xí)第一題,寫出一些數(shù)的絕對值。可以請學(xué)生起立回答。我就學(xué)生的回答情況給出評價,如“很好”“很規(guī)范”“老師相信你,你一定行”等語言來激勵學(xué)生,以促進(jìn)學(xué)生的發(fā)展;并再次強(qiáng)調(diào)絕對值的定義。
3、在完成第一題的練習(xí)后,我又給出一新的幻燈片,并提出問題:議一議 一個數(shù)的絕對值與這個數(shù)有什么關(guān)系?啟發(fā)學(xué)生舉一些實際的例子來發(fā)現(xiàn)規(guī)律,并總結(jié)規(guī)律。從而引出絕對值的第二個定義。
(四)啟發(fā)誘導(dǎo),初步運(yùn)用:
有了絕對值的兩個定義后,我安排了10道不同層次的判斷題讓學(xué)生思考。特別注重對于不同難度的問題,提問不同層次的學(xué)生,面向全體,使基礎(chǔ)差的學(xué)生也能有表現(xiàn)的機(jī)會,培養(yǎng)其自信心,激發(fā)其學(xué)習(xí)熱情。
(五)反饋矯正,注重參與:
為鞏固本節(jié)的教學(xué)重點(diǎn)我再次給出三道問題:
1)絕對值是7的數(shù)有幾個?各是什么?有沒有絕對值是-2的數(shù)?
2)絕對值是0的數(shù)有幾個?各是什么?
3)絕對值小于3的整數(shù)一共有多少個?
先讓學(xué)生通過小組討論得出結(jié)果,通過以上練習(xí)使學(xué)生在掌握知識的基礎(chǔ)上達(dá)到靈活運(yùn)用,形成一定的能力。
視學(xué)生的反饋情況以及剩余時間的多少我還預(yù)備了五道課堂升華的思考題,再次強(qiáng)化訓(xùn)練,啟發(fā)學(xué)生的思維。
(六)歸納小結(jié),強(qiáng)化思想
(七)布置作業(yè),引導(dǎo)預(yù)習(xí)
1、全體學(xué)生必做課本習(xí)題 1,2,3,4,5,10。
2、選作兩道思考題:
(1)求絕對值不大于2的整數(shù);(2)已知x是整數(shù),且2.5<|x|<7, 求x.
總之,在教學(xué)過程中,我始終注意發(fā)揮學(xué)生的主體作用,讓學(xué)生通過自主、探究、合作學(xué)習(xí)來主動發(fā)現(xiàn)結(jié)論,實現(xiàn)師生互動,通過這樣的教學(xué)實踐取得了良好的教學(xué)效果,我認(rèn)識到教師不僅要教給學(xué)生知識,更要培養(yǎng)學(xué)生良好的數(shù)學(xué)素養(yǎng)和學(xué)習(xí)習(xí)慣,讓學(xué)生學(xué)會學(xué)習(xí)。
初中數(shù)學(xué)七年級《絕對值》說課稿 2
一、素質(zhì)教育目標(biāo)
。ㄒ唬┲R教學(xué)點(diǎn)
1.能根據(jù)一個數(shù)的絕對值表示"距離",初步理解絕對值的概念。
2.給出一個數(shù),能求它的絕對值。
。ǘ┠芰τ(xùn)練點(diǎn)
在把絕對值的代數(shù)定義轉(zhuǎn)化成數(shù)學(xué)式子的過程中,培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)轉(zhuǎn)化思想指導(dǎo)思維活動的能力。
。ㄈ┑掠凉B透點(diǎn)
1.通過解釋絕對值的幾何意義,滲透數(shù)形結(jié)合的思想。
2.從上節(jié)課學(xué)的相反數(shù)到本節(jié)的絕對值,使學(xué)生感知數(shù)學(xué)知識具有普遍的聯(lián)系性。
。ㄋ模┟烙凉B透點(diǎn)
通過數(shù)形結(jié)合理解絕對值的意義和相反數(shù)與絕對值的聯(lián)系,使學(xué)生進(jìn)一步領(lǐng)略數(shù)學(xué)的和諧美。
二、學(xué)法引導(dǎo)
1.教學(xué)方法:采用引導(dǎo)發(fā)現(xiàn)法,輔之以講授,學(xué)生討論,力求體現(xiàn)"教為主導(dǎo),學(xué)為主體"的教學(xué)要求,注意創(chuàng)設(shè)問題情境,使學(xué)生自得知識,自覓規(guī)律。
2.學(xué)生學(xué)法:研究+6和-6的不同點(diǎn)和相同點(diǎn)→絕對值概念→鞏固練習(xí)→歸納小結(jié)(絕對值代數(shù)意義)
三、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法
1.重點(diǎn):給出一個數(shù)會求出它的絕對值。
2.難點(diǎn):絕對值的幾何意義,代數(shù)定義的導(dǎo)出。
3.疑點(diǎn):負(fù)數(shù)的絕對值是它的相反數(shù)。
四、課時安排
2課時
五、教具學(xué)具準(zhǔn)備
投影儀(電腦)、三角板、自制膠片。
六、師生互動活動設(shè)計
教師提出+6和-6有何相同點(diǎn)和不同點(diǎn),學(xué)生研究討論得出絕對值概念;教師出示練習(xí)題,學(xué)生討論解答歸納出絕對值代數(shù)意義。
七、教學(xué)步驟
。ㄒ唬﹦(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入
師:以上我們學(xué)習(xí)了數(shù)軸、相反數(shù)。在練習(xí)本上畫一個數(shù)軸,并標(biāo)出表示-6,0及它們的相反數(shù)的點(diǎn)。
學(xué)生活動:一個學(xué)生板演,其他學(xué)生在練習(xí)本上畫。
【教法說明】絕對值的學(xué)習(xí)是以相反數(shù)為基礎(chǔ)的,在學(xué)生動手畫數(shù)軸的同時,把相反數(shù)的知識進(jìn)行復(fù)習(xí),同時也為絕對值概念的引入奠定了基礎(chǔ),這里老師不包辦代替,讓學(xué)生自己練習(xí)。
。ǘ┨剿餍轮,導(dǎo)入新課
師:同學(xué)們做得非常好!-6與6是相反數(shù),它們只有符號不同,它們什么相同呢?
學(xué)生活動:思考討論,很難得出答案。
師:在數(shù)軸上標(biāo)出到原點(diǎn)距離是6個單位長度的點(diǎn)。
學(xué)生活動:一個學(xué)生板演,其他學(xué)生在練習(xí)本上做。
師:顯然A點(diǎn)(表示6的點(diǎn))到原點(diǎn)的距離是6,B點(diǎn)(表示-6的點(diǎn))到原點(diǎn)距離是6個單位長嗎?
學(xué)生活動:產(chǎn)生疑問,討論。
師:+6與-6雖然符號不同,但表示這兩個數(shù)的點(diǎn)到原點(diǎn)的距離都是6,是相同的。我們把這個距離叫+6與-6的絕對值。
2.4絕對值(1)
【教法說明】針對"互為相反數(shù)的兩數(shù)只有符號不同"提出問題:"它們什么相同呢?"在學(xué)生頭腦中產(chǎn)生疑問,激發(fā)了學(xué)生探索知識的欲望,但這時學(xué)生很難回答出此問題,這時教師注意引導(dǎo)再提出要求:"找到原點(diǎn)距離是6個單位長度的點(diǎn)"這時學(xué)生就有了一個攀登的臺階,自然而然地想到表示+6,-6的點(diǎn)到原點(diǎn)的距離相同,從而引出了絕對值的概念,這樣一環(huán)緊扣一環(huán),時而緊張時而輕松,不知不覺學(xué)生已獲得了知識。
師:-6的絕對值是表示-6的點(diǎn)到原點(diǎn)的距離,-6的絕對值是6;6的絕對值是表示6的點(diǎn)到原點(diǎn)的距離,6的絕對值是6.
提出問題:(1)-3的絕對值表示什么?
。2)3的絕對值呢?
。3)a的絕對值呢?
學(xué)生活動:(1)(2)題根據(jù)教師的引導(dǎo)學(xué)生口答,(3)題討論后口答。
一個數(shù)a的絕對值是數(shù)軸上表示數(shù)a的點(diǎn)到原點(diǎn)的距離。
數(shù)a的絕對值是|a|
【教法說明】由-6,6,-3,這些特殊的數(shù)的絕對值引出數(shù)的絕對值,逐層鋪墊,由學(xué)生得出絕對值的幾何意義,既理解了一個數(shù)的絕對值的含義也訓(xùn)練了學(xué)生口頭表達(dá)能力,突破了難點(diǎn)。
。ㄈ﹪L試反饋,鞏固練習(xí)
師:字母可以表示任意數(shù),若把a(bǔ)換成,9,0,-1,-0.4觀察數(shù)軸,它們的絕對值各是多少?
學(xué)生活動:口答:,,,,
師:你在自己畫的數(shù)軸上標(biāo)出五個數(shù),讓同桌指出它們的絕對值。
學(xué)生活動:按教師要求自己又當(dāng)"小老師"又當(dāng)"學(xué)生".
教師找一組學(xué)生回答,并及時糾正出現(xiàn)的錯誤。
。ǔ鍪就队1)
例 求8,-8的絕對值。
師:觀察數(shù)軸做出此題。
學(xué)生活動:口答
師:由此題目你能想到什么規(guī)律?
學(xué)生活動:討論得出—互為相反數(shù)的兩數(shù)絕對值相同。
【教法說明】這一環(huán)節(jié)是對絕對值的幾何定義的鞏固。這里對于絕對值定義的.理解不能空談"5的絕對值、-7的絕對值是多少"?而是與數(shù)軸相結(jié)合,始終利用表示這數(shù)的點(diǎn)到原點(diǎn)的距離是這個數(shù)的絕對值這一概念。教師先闡明這個字母可表示任意數(shù),再把換成一組數(shù),學(xué)生自己又把換成了一些數(shù),指出它們的絕對值,這樣既理解了數(shù)所表示的廣泛含義,又鞏固了絕對值的定義。然后,通過例題總結(jié)出了互為相反數(shù)的兩數(shù)的絕對值相等這一規(guī)律,既呼應(yīng)了前面內(nèi)容,又升華了絕對值的概念。
師:觀察數(shù)軸,在原點(diǎn)右邊的點(diǎn)表示的數(shù)(正數(shù))的絕對值有什么特點(diǎn)?
在原點(diǎn)左邊的點(diǎn)表示的數(shù)(負(fù)數(shù))的絕對值呢?
生:思考,不能輕易回答出來。
師:再看前面我們所求的,.你能得出什么規(guī)律嗎?
學(xué)生活動:思考后一學(xué)生口答。
教師糾正并板書:
正數(shù)的絕對值是它本身。
負(fù)數(shù)的絕對值是它的相反數(shù)。
0的絕對值是0.
師:字母可表示任意的數(shù),可以表示正數(shù),也可以表示負(fù)數(shù),也可以表示0.
教師引導(dǎo)學(xué)生用數(shù)學(xué)式子表示正數(shù)、負(fù)數(shù)、0,并再提問:這時的絕對值分別是多少?
學(xué)生活動:分組討論,教師加入討論,學(xué)生互相補(bǔ)充回答。
教師板書:
師強(qiáng)調(diào):這種表示方法就相當(dāng)于前面三句話,比較起來后者更通俗易懂。
【教法說明】用字母表示規(guī)律是難點(diǎn)。這時教師放手,讓學(xué)生有目的地考慮、分析,共同得出結(jié)論。
。ㄋ模w納小結(jié)
師:這節(jié)課我們學(xué)習(xí)了絕對值。
。1)一個數(shù)的絕對值是在數(shù)軸上表示這個數(shù)的點(diǎn)到原點(diǎn)的距離;(2)求一個數(shù)的絕對值必須先判斷是正數(shù)還是負(fù)數(shù)。
回顧反饋:
。ǔ鍪就队2)
1.-3的絕對值是在_____________上表示-3的點(diǎn)到__________的距離,-3的絕對值是____________.
2.絕對值是3的數(shù)有____________個,各是___________;絕對值是2.7的數(shù)有___________個,各是___________;絕對值是0的數(shù)有____________個,是____________.
絕對值是-2的數(shù)有沒有?
八、隨堂練習(xí)
1.判斷題
。1)數(shù)的絕對值就是數(shù)軸上表示數(shù)的點(diǎn)與原點(diǎn)的距離( )(2)負(fù)數(shù)沒有絕對值( )
。3)絕對值最小的數(shù)是0( )
。4)如果甲數(shù)的絕對值比乙數(shù)的絕對值大,那么甲數(shù)一定比乙數(shù)大( )(5)如果數(shù)的絕對值等于,那么一定是正數(shù)
2.填表
九、布置作業(yè)
課本第50頁2、4.
初中數(shù)學(xué)七年級《絕對值》說課稿 3
一、說教材
。ㄎ澹┙滩牡牡匚缓妥饔
《絕對值》是選自人教版初一數(shù)學(xué)第一章第二節(jié)第四部分的內(nèi)容。這部分內(nèi)容之前已經(jīng)學(xué)習(xí)了有理數(shù)、數(shù)軸、相反數(shù)的內(nèi)容,這是本節(jié)課學(xué)習(xí)的基礎(chǔ)。絕對值的內(nèi)容主要包括含義及有理數(shù)之間的大小比較,這也為后面學(xué)習(xí)有理數(shù)的加減法奠定了基礎(chǔ)。
。┙虒W(xué)目標(biāo)
根據(jù)對教材內(nèi)容的分析,以及在新課改理念的指導(dǎo)下,制定了如下三維目標(biāo):
。ㄒ唬┲R與技能
理解、掌握絕對值的含義,并且會比較有理數(shù)之間的大小。
(二)過程與方法
運(yùn)用數(shù)軸來推理數(shù)的絕對值,并在推理的過程中清晰的闡述自己的觀點(diǎn),從而逐步發(fā)展發(fā)生的抽象思維。
。ㄈ┣楦袘B(tài)度與價值觀
體驗數(shù)學(xué)活動的探索性和創(chuàng)造性,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性以及數(shù)學(xué)結(jié)論的確定性。
教學(xué)重難點(diǎn)
通過以上對教材內(nèi)容及教學(xué)目標(biāo)的分析,以及學(xué)生已有的知識水平,本節(jié)課的教學(xué)重難點(diǎn)如下:
重點(diǎn):絕對值的理解以及有理數(shù)的`比較
難點(diǎn):負(fù)數(shù)的絕對值的理解及比較
二、說學(xué)情
以上就是我對教材的分析,由于教學(xué)目標(biāo)及重難點(diǎn)的確定也是在學(xué)生情況的基礎(chǔ)上進(jìn)行的,所以下面我對學(xué)情進(jìn)行分析。
初一學(xué)生的抽象思維開始有了一定的發(fā)展,但還需一定的感性材料作支撐,同時思維比較活躍和積極,所以教學(xué)過程中會注重直觀材料的運(yùn)用,然后引導(dǎo)學(xué)生自主思考并理解知識,以激發(fā)學(xué)生的學(xué)習(xí)興趣,調(diào)動學(xué)生的積極性和主動性。
三、說教材
基于以上對教材、學(xué)情的分析,以及新課改的要求,我在本課中采用的教法有:講授法、演示法和引導(dǎo)歸納法。演示法中需要的教具有多媒體和溫度計。
四、說教法
新課改理念告訴我們,學(xué)生不僅要學(xué)到具體的知識,更重要的是學(xué)生要學(xué)會怎樣自己學(xué)習(xí),為終身學(xué)習(xí)奠定扎實的基礎(chǔ)。所以本課中我將引導(dǎo)學(xué)生通過自主探究、合作交流的學(xué)法來更好的掌握本節(jié)課的內(nèi)容。
五、說教學(xué)程序
為了更好的實現(xiàn)三維目標(biāo)、突破重難點(diǎn),我將本課的教學(xué)程序設(shè)計為以下五個環(huán)節(jié):
。ㄒ唬┣榫硨(dǎo)入
出示溫度計,"北方某一城市的溫度是零下15攝氏度,南方某一城市的溫度是15攝氏度",學(xué)生在稿紙上畫一條數(shù)軸,標(biāo)出這兩個溫度,并請一位學(xué)生畫在黑板上。
數(shù)軸的兩個數(shù)值是相反數(shù),是上節(jié)課的內(nèi)容,0到-15°和0到15°的變化溫度分別是15°,那么兩個相同的變化溫度,怎么用數(shù)學(xué)符號表示出來呢?
(二)新授
1.從上面的問題中,我引出今天的"絕對值"概念,然后和學(xué)生一起從數(shù)軸上推導(dǎo)出絕對值。
2.使用多媒體呈現(xiàn)一組數(shù)字,包括幾個正數(shù),幾個負(fù)數(shù)。讓大家在數(shù)軸上畫出,并寫出每個數(shù)字的絕對值。然后學(xué)生來依次說出每個絕對值,以鞏固概念的掌握。
3.和大家一起寫出這些絕對值,把負(fù)數(shù)、正數(shù)、0的絕對值分別寫在三個地方,引導(dǎo)學(xué)生觀察這些絕對值,并思考其中的規(guī)律,然后和學(xué)生一起得出結(jié)論,即正數(shù)的絕對值是本身,負(fù)數(shù)的絕對值是它的相反數(shù),0的絕對值的0.得出這個結(jié)論后順勢提問:數(shù)a的絕對值是多少?進(jìn)行分組討論,在討論一段時間后提醒學(xué)生剛剛的結(jié)論。
4.在每組的回答后,和學(xué)生一起總結(jié)出數(shù)a的絕對值,分三種情況,當(dāng)a大于0,絕對值為a;等于0時,為0;小于0時,為-a.這三種情況的分析后,學(xué)生就充分理解了絕對值的含義。
5.回到大家畫的數(shù)軸,大家很容易比較出原點(diǎn)0右邊的正數(shù)的大小,那么左邊的負(fù)數(shù)的大小怎么比較呢?提出這個問題后不急于讓學(xué)生回答,而是把學(xué)生引入一個情境,即把數(shù)軸上的數(shù)都看成是溫度,比較溫度的大小就比較容易,然后回到數(shù)的比較。在這個引導(dǎo)后,得出的結(jié)論是:離0越遠(yuǎn)的數(shù),越;也可以說絕對值越大的負(fù)數(shù)越小。
。ㄈ╈柟叹毩(xí)
在PPT上呈現(xiàn)一些數(shù)的絕對值,以及一些負(fù)數(shù)、正數(shù)、絕對值之間的比較的題。
(四)小結(jié)
引導(dǎo)學(xué)生總結(jié)出今天的學(xué)習(xí)內(nèi)容,培養(yǎng)學(xué)生的歸納以及邏輯思維能力。
。ㄎ澹┎贾米鳂I(yè)
布置作業(yè)不是目的,目的是學(xué)生能夠更好的掌握并運(yùn)用本節(jié)課的內(nèi)容。所以我會布置這樣一個作業(yè):請學(xué)生回家可以在父母的幫助下,找出南方和北方分別三個城市的溫度,比較這些溫度的大小,并寫出每個溫度的絕對值并進(jìn)行比較。
。┱f板書設(shè)計
為了學(xué)生能夠更清晰的掌握內(nèi)容,我用寫關(guān)鍵詞的方式來有邏輯性的呈現(xiàn)我的板書。
以上就是我說課的全部內(nèi)容,謝謝!
初中數(shù)學(xué)七年級《絕對值》說課稿 4
●教學(xué)目標(biāo)
知識與能力:借助于數(shù)軸,初步理解絕對值的概念,能求一個數(shù)的絕對值,初步學(xué)會求絕對值等于某一個正數(shù)的有理數(shù)。
過程與方法:通過從數(shù)形兩個側(cè)面理解絕對值的意義,初步了解數(shù)形結(jié)合的思想方法。通過應(yīng)用絕對值解決實際問題,體會絕對值的意義。
情感態(tài)度與價值觀:通過應(yīng)用絕對值解決實際問題,培養(yǎng)學(xué)生濃厚的學(xué)習(xí)興趣,使學(xué)生能積極參與數(shù)學(xué)學(xué)習(xí)活動,對數(shù)學(xué)有好奇心與求知欲。
●教學(xué)重點(diǎn)與難點(diǎn)
教學(xué)重點(diǎn):絕對值的概念和求一個數(shù)的絕對值
教學(xué)難點(diǎn):絕對值的幾何意義及求絕對值等于某一個正數(shù)的有理數(shù)。
●教學(xué)準(zhǔn)備
多媒體課件
●教學(xué)過程
一、創(chuàng)設(shè)問題情境
用多媒體動畫顯示:兩只小狗從同一點(diǎn)O出發(fā),在一條筆直的街上跑,
一只向右跑10米到達(dá)A點(diǎn),另一只向左跑10米到達(dá)B點(diǎn)。若規(guī)定向右為正,則A處記做__________,B處記做__________。
以O為原點(diǎn),取適當(dāng)?shù)膯挝婚L度畫數(shù)軸,并標(biāo)出A、B的位置。
。ㄓ蒙鷦佑腥さ膱D畫吸引學(xué)生,即復(fù)習(xí)了數(shù)軸和相反數(shù),又為下文作準(zhǔn)備)。
。、這兩只小狗在跑的過程中,有沒有共同的地方?在數(shù)軸上的A、B兩
又有什么特征?(從形和數(shù)兩個角度去感受絕對值)。
3、在數(shù)軸上找到-5和5的點(diǎn),它們到原點(diǎn)的距離分別是多少?表示-和的點(diǎn)呢?
小結(jié):在實際生活中,有時存在這樣的情況,無需考慮數(shù)的正負(fù)性質(zhì),比如:在計算小狗所跑的路程中,與小狗跑的方向無關(guān),這時所走的路程只需用正數(shù),這樣就必須引進(jìn)一個新的概念———絕對值。
二、建立數(shù)學(xué)模型
絕對值的概念
。ń柚跀(shù)軸這一工具,師生共同討論,引出絕對值的概念)
絕對值的幾何定義:一個數(shù)在數(shù)軸上對應(yīng)的點(diǎn)到原點(diǎn)的距離叫做這個數(shù)的絕對值。比如:-5到原點(diǎn)的距離是5,所以-5的絕對值是5,記|-5|=5;5的絕對值是5,記做|5|=5。
注意:①與原點(diǎn)的關(guān)系②是個距離的概念
練習(xí)1:請學(xué)生舉一個生活中的實際例子,說明解決有的問題只需考慮的數(shù)絕對值。
(通過應(yīng)用絕對值解決實際問題,體會絕對值的意義與作用,感受數(shù)學(xué)在生活中的價值。)
三、應(yīng)用深化知識
1、例題求解
例1、求下列各數(shù)的絕對值
。1.6, , 0, -10, +10
解:|-1.6|=1.6 ||= |0|=0
|-10|=10 |+10|=10
2、練習(xí)2:填表
相反數(shù) 絕對值 2.05 1000 0 - -1000 -2.05
。ㄒ员砀竦男问綄⒔^對值和相反數(shù)進(jìn)行比較,為歸納絕對值的特征作準(zhǔn)備)
3、根據(jù)上述題目,讓學(xué)生歸納總結(jié)絕對值的特點(diǎn)。(教師進(jìn)行補(bǔ)充小結(jié))
特點(diǎn):1、一個正數(shù)的絕對值是它本身
2、一個負(fù)數(shù)的`絕對值是它的相反數(shù)
3、零的絕對值是零
4、互為相反數(shù)的兩個數(shù)的絕對值相等
4、練習(xí)3:回答下列問題
、僖粋數(shù)的絕對值是它本身,這個數(shù)是什么數(shù)?
、谝粋數(shù)的絕對值是它的相反數(shù),這個數(shù)是什么數(shù)?
、垡粋數(shù)的絕對值一定是正數(shù)嗎?
、芤粋數(shù)的絕對值不可能是負(fù)數(shù),對嗎?
、萁^對值是同一個正數(shù)的數(shù)有兩個,它們互為相反數(shù),這句話對嗎?
。ㄓ蓪W(xué)生口答完成,進(jìn)一步鞏固絕對值的概念)
5、例2、求絕對值等于4的數(shù)。
。ㄗ寣W(xué)生考慮這樣的數(shù)有幾個,是怎樣得出這個結(jié)果的呢?對后一個問題由學(xué)生去討論,啟發(fā)學(xué)生從數(shù)與形兩個方面考慮,培養(yǎng)學(xué)生的發(fā)散思維能力。)
分析:
①從數(shù)字上分析
∵|+4|=4,|-4|=4 ∴絕對值等于4的數(shù)是+4和-4畫一個數(shù)軸(如下圖)
、趶膸缀我饬x上分析,畫一個數(shù)軸(如下圖)
∵數(shù)軸上到原點(diǎn)的距離等于4個單位長度的點(diǎn)有兩個,即表示+4的點(diǎn)P和表示-4的點(diǎn)M
∴絕對值等于4的數(shù)是+4和-4
注意:說明符號“∵”讀作“因為”,“∴”讀作“所以”
6、練習(xí)本:做書上16頁課內(nèi)練習(xí)3、4兩題。
四、歸納小結(jié)
本節(jié)課我們學(xué)習(xí)了什么知識?
你覺得本節(jié)課有什么收獲?
由學(xué)生自行總結(jié)在自主探究,合作學(xué)習(xí)中的體會。
五、課后作業(yè)
讓學(xué)生去尋找一些生活中只考慮絕對值的實際例子。
課本16頁的作業(yè)題。
本人在近幾屆樂清市中、小、幼教師教學(xué)論文聯(lián)評中均有獲獎,特別是論文《談數(shù)學(xué)學(xué)困生的惰性心態(tài)及教學(xué)策略》在全國數(shù)學(xué)教研第十一屆年會論文(初中組)比賽中獲三等獎;而且在近幾年的說課比賽和優(yōu)質(zhì)課評比中表現(xiàn)出色;是校青年骨干教師,名教師培養(yǎng)對象。
樂清市虹橋鎮(zhèn)第一中學(xué) 陳楊明
-4 -3 -2 -1 0 1 2 3 4
4個單位長度 4個單位長度
M
初中數(shù)學(xué)七年級《絕對值》說課稿 5
教學(xué)目標(biāo)
1、知識與技能。
①能根據(jù)一個數(shù)的絕對值表示距離,初步理解絕對值的概念,能求一個數(shù)的絕對值。
②通過應(yīng)用絕對值解決實際問題,體會絕對值的意義和作用。
2、過程與方法
經(jīng)歷絕對值的代數(shù)定義轉(zhuǎn)化成數(shù)學(xué)式子的過程中,培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)轉(zhuǎn)化思想指導(dǎo)思維活動的能力。
3、情感、態(tài)度與價值觀
①通過解釋絕對值的幾何意義,滲透數(shù)形結(jié)合的思想。
、隗w驗運(yùn)用直觀知識解決數(shù)學(xué)問題的成功。
教學(xué)重點(diǎn)難點(diǎn)
重點(diǎn):給出一個數(shù),會求它的'絕對值。
難點(diǎn):絕對值的幾何意義、代數(shù)定義的導(dǎo)出。
教與學(xué)互動設(shè)計
。ㄒ唬﹦(chuàng)設(shè)情境,導(dǎo)入新課
活動:請兩同學(xué)到講臺前,分別向左、向右行3米。
交流:
①他們所走的路線相同嗎?
、谌粝蛴覟檎,分別可怎樣表示他們的位置?
、鬯麄兯叩穆烦痰倪h(yuǎn)近是多少?
。ǘ┖献鹘涣,解讀探究
觀察出示一組數(shù)6與—6,3。5與—3。5,1和—1,它們是一對互為________,它們的__________不同,__________相同。
總結(jié):例如6和—6兩個數(shù)在數(shù)軸上的兩點(diǎn)雖然分布在原點(diǎn)的兩邊,但它們到原點(diǎn)的距離相等,如果我們不考慮兩點(diǎn)在原點(diǎn)的哪一邊,只考慮它們離開原點(diǎn)的距離,這個距離都是6,我們就把這個距離叫做6和—6的絕對值。
絕對值:在數(shù)軸上表示數(shù)a的點(diǎn)與原點(diǎn)的距離叫做a的絕對值,記作│a│。
想一想—3的絕對值是什么?
初中數(shù)學(xué)七年級《絕對值》說課稿 6
教學(xué)目標(biāo)
1、了解絕對值的概念,會求有理數(shù)的絕對值;
2、會利用絕對值比較兩個負(fù)數(shù)的大小;
3、在絕對值概念形成過程中,滲透數(shù)形結(jié)合等思想方法,并注意培養(yǎng)學(xué)生的思維能力。
教學(xué)建議
一、重點(diǎn)、難點(diǎn)分析
絕對值概念既是本節(jié)的教學(xué)重點(diǎn)又是教學(xué)難點(diǎn)。關(guān)于絕對值的概念,需要明確的是無論是絕對值的幾何定義,還是絕對值的代數(shù)定義,都揭示了絕對值的一個重要性質(zhì)——非負(fù)性,也就是說,任何一個有理數(shù)的絕對值都是非負(fù)數(shù),即無論a取任意有理數(shù),都有。
教材上絕對值的定義是從幾何角度給出的,也就是從數(shù)軸上表示數(shù)的點(diǎn)在數(shù)軸上的位置出發(fā),得到的定義。這樣,數(shù)軸的概念、畫法、利用數(shù)軸比較有理數(shù)的大小、相反數(shù),以及絕對值,通過數(shù)軸,這些知識都聯(lián)系在一起了。此外,0的絕對值是0,從幾何定義出發(fā),就十分容易理解了。
二、知識結(jié)構(gòu)
絕對值的定義;
絕對值的`表示方法;
用絕對值比較有理數(shù)的大小。
三、教法建議
用語言敘述絕對值的定義,用解析式的形式給出絕對值的定義,或利用數(shù)軸定義絕對值,從理論上講都是可以的初學(xué)絕對值用語言敘述的定義,好像更便于學(xué)生記憶和運(yùn)用,以后逐步改用解析式表示絕對值的定義,即在教學(xué)中,只能突出一種定義,否則容易引起混亂?梢园牙脭(shù)軸給出的定義作為絕對值的一種直觀解釋。
此外,要反復(fù)提醒學(xué)生:一個有理數(shù)的絕對值不能是負(fù)數(shù),但不能說一定是正數(shù)!胺秦(fù)數(shù)”的概念視學(xué)生的情況,逐步滲透,逐步提出。
四、有關(guān)絕對值的一些內(nèi)容
1。絕對值的代數(shù)定義
一個正數(shù)的絕對值是它本身;一個負(fù)數(shù)的絕對值是它的相反數(shù);零的絕對值是零。
2。絕對值的幾何定義
在數(shù)軸上表示一個數(shù)的點(diǎn)離開原點(diǎn)的距離,叫做這個數(shù)的絕對值。
3。絕對值的主要性質(zhì)
。2)一個實數(shù)的絕對值是一個非負(fù)數(shù),即|a|≥0,因此,在實數(shù)范圍內(nèi),絕對值最小的數(shù)是零。
(4)兩個相反數(shù)的絕對值相等。
五、運(yùn)用絕對值比較有理數(shù)的大小
1、兩個負(fù)數(shù)大小的比較,因為兩個負(fù)數(shù)在數(shù)軸上的位置關(guān)系是:絕對值較大的負(fù)數(shù)一定在絕對值較小的負(fù)數(shù)左邊,所以,兩個負(fù)數(shù),絕對值大的反而小。
比較兩個負(fù)數(shù)的方法步驟是:
(1)先分別求出兩個負(fù)數(shù)的絕對值;
。2)比較這兩個絕對值的大;
。3)根據(jù)“兩個負(fù)數(shù),絕對值大的反而小”作出正確的判斷。
2、兩個正數(shù)大小的比較,與小學(xué)學(xué)習(xí)的方法一致,絕對值大的較大。
初中數(shù)學(xué)七年級《絕對值》說課稿 7
教學(xué)目標(biāo)
1.知識與技能
、倌芨鶕(jù)一個數(shù)的絕對值表示距離,初步理解絕對值的概念,能求一個數(shù)的絕對值.
、谕ㄟ^應(yīng)用絕對值解決實際問題,體會絕對值的意義和作用.
2.過程與方法
經(jīng)歷絕對值的代數(shù)定義轉(zhuǎn)化成數(shù)學(xué)式子的過程中,培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)轉(zhuǎn)化思想指導(dǎo)思維活動的能力.
3.情感、態(tài)度與價值觀
、偻ㄟ^解釋絕對值的幾何意義,滲透數(shù)形結(jié)合的思想.
②體驗運(yùn)用直觀知識解決數(shù)學(xué)問題的成功.
教學(xué)重點(diǎn)難點(diǎn)
重點(diǎn):給出一個數(shù),會求它的絕對值.
難點(diǎn):絕對值的幾何意義、代數(shù)定義的導(dǎo)出.
教與學(xué)互動設(shè)計
(一)創(chuàng)設(shè)情境,導(dǎo)入新課
活動 請兩同學(xué)到講臺前,分別向左、向右行3米.
交流 ①他們所走的路線相同嗎?
、谌粝蛴覟檎謩e可怎樣表示他們的位置? ③他們所走的路程的遠(yuǎn)近是多少?
(二)合作交流,解讀探究
觀察 出示一組數(shù)6與-6,3.5與-3.5,1和-1,它們是一對互為________,它們的__________不同,__________相同.
總結(jié): 例如6和-6兩個數(shù)在數(shù)軸上的兩點(diǎn)雖然分布在原點(diǎn)的兩邊,但它們到原點(diǎn)的'距離相等,如果我們不考慮兩點(diǎn)在原點(diǎn)的哪一邊,只考慮它們離開原點(diǎn)的距離,這個距離都是6,我們就把這個距離叫做6和-6的絕對值.
絕對值:在數(shù)軸上表示數(shù)a的點(diǎn)與原點(diǎn)的距離叫做a的絕對值,記作│a│.
想一想 -3的絕對值是什么?
初中數(shù)學(xué)七年級《絕對值》說課稿 8
一、教學(xué)目標(biāo):
1.知識目標(biāo):
、倌軠(zhǔn)確理解絕對值的幾何意義和代數(shù)意義。
、谀軠(zhǔn)確熟練地求一個有理數(shù)的絕對值。
、凼箤W(xué)生知道絕對值是一個非負(fù)數(shù),能更深刻地理解相反數(shù)的概念。
2.能力目標(biāo):
、俪醪脚囵B(yǎng)學(xué)生觀察、分析、歸納和概括的思維能力。
、诔醪脚囵B(yǎng)學(xué)生由抽象到具體再到抽象的思維能力。
3.情感目標(biāo):
、偻ㄟ^向?qū)W生滲透數(shù)形結(jié)合思想和分類討論的思想,讓學(xué)生領(lǐng)略到數(shù)學(xué)的奧妙,從而激起他們的好奇心和求知欲望。
、谕ㄟ^課堂上生動、活潑和愉快、輕松地學(xué)習(xí),使學(xué)生感受到學(xué)習(xí)數(shù)學(xué)的快樂,從而增強(qiáng)他們的自信心。
二、教學(xué)重點(diǎn)和難點(diǎn)
教學(xué)重點(diǎn):絕對值的幾何意義和代數(shù)意義,以及求一個數(shù)的'絕對值。
教學(xué)難點(diǎn):絕對值定義的得出、意義的理解及求一個負(fù)數(shù)的絕對值。
三、教學(xué)方法
啟發(fā)引導(dǎo)式、討論式和談話法
四、教學(xué)過程
(一)復(fù)習(xí)提問
問題:相反數(shù)6與-6在數(shù)軸上與原點(diǎn)的距離各是多少?兩個相反數(shù)在數(shù)軸上的點(diǎn)有什么特征?
。ǘ┬率
1.引入
結(jié)合教材P63圖2-11和復(fù)習(xí)問題,講解6與-6的絕對值的意義。
2.數(shù)a的絕對值的意義
、賻缀我饬x
一個數(shù)a的絕對值就是數(shù)軸上表示數(shù)a的點(diǎn)到原點(diǎn)的距離。數(shù)a的絕對值記作|a|.
舉例說明數(shù)a的絕對值的幾何意義。(按教材P63的倒數(shù)第二段進(jìn)行講解。)
強(qiáng)調(diào):表示0的點(diǎn)與原點(diǎn)的距離是0,所以|0|=0.
指出:表示“距離”的數(shù)是非負(fù)數(shù),所以絕對值是一個非負(fù)數(shù)。
、诖鷶(shù)意義
把有理數(shù)分成正數(shù)、零、負(fù)數(shù),根據(jù)絕對值的幾何意義可以得出絕對值的代數(shù)意義:一個正數(shù)的絕對值是它本身,一個負(fù)數(shù)的絕對值是它的相反數(shù),0的絕對值是0.
用字母a表示數(shù),則絕對值的代數(shù)意義可以表示為:
指出:絕對值的代數(shù)定義可以作為求一個數(shù)的絕對值的方法。
3.例題精講
例1.求8,-8,,-的絕對值。
按教材方法講解。
例2.計算:|2.5|+|-3|-|-3|.
解:|2.5|+|-3|-|-3|=2.5+3-3=6-3=3
例3.已知一個數(shù)的絕對值等于2,求這個數(shù)。
解:∵|2|=2,|-2|=2
∴這個數(shù)是2或-2.
五、鞏固練習(xí)
練習(xí)一:教材P641、2,P66習(xí)題2.4A組1、2.
練習(xí)二:
1.絕對值小于4的整數(shù)是____.
2.絕對值最小的數(shù)是____.
3.已知|2x-1|+|y-2|=0,求代數(shù)式3x2y的值。
六、歸納小結(jié)
本節(jié)課從幾何與代數(shù)兩個方面說明了絕對值的意義,由絕對值的意義可知,任何數(shù)的絕對值都是非負(fù)數(shù)。絕對值的代數(shù)意義可以作為求一個數(shù)的絕對值的方法。
七、布置作業(yè)
教材P66習(xí)題2.4A組3、4、5.
初中數(shù)學(xué)七年級《絕對值》說課稿 9
一、教學(xué)目標(biāo):
1、掌握絕對值的概念,有理數(shù)大小比較法則。
2、學(xué)會絕對值的計算,會比較兩個或多個有理數(shù)的大小。
3、體驗數(shù)學(xué)的概念、法則來自于實際生活,滲透數(shù)形結(jié)合和分類思想。
二、教學(xué)難點(diǎn):
兩個負(fù)數(shù)大小的比較。
三、知識重點(diǎn):
絕對值的概念。
四、教學(xué)過程:
。ㄒ唬┰O(shè)置情境。
1、引入課題。
星期天黃老師從學(xué)校出發(fā),開車去游玩,她先向東行20千米,到朱家尖,下午她又向西行30千米,回到家中(學(xué)校、朱家尖、家在同一直線上),如果規(guī)定向東為正:
(1)用有理數(shù)表示黃老師兩次所行的路程。
(2)如果汽車每公里耗油0.15升,計算這天汽車共耗油多少升?
2、學(xué)生思考后,教師作如下說明:
實際生活中有些問題只關(guān)注量的具體值,而與相反意義無關(guān),即正負(fù)性無關(guān),如汽車的耗油量我們只關(guān)心汽車行駛的距離和汽油的價格,而與行駛的方向無關(guān)。
3、觀察并思考:
畫一條數(shù)軸,原點(diǎn)表示學(xué)校,在數(shù)軸上畫出表示朱家尖和黃老師家的點(diǎn),觀察圖形,說出朱家尖黃老師家與學(xué)校的距離。
4、學(xué)生回答后,教師說明如下:
數(shù)軸上表示數(shù)的點(diǎn)到原點(diǎn)的距離只與這個點(diǎn)離開原點(diǎn)的長度有關(guān),而與它所表示的數(shù)的正負(fù)性無關(guān);一般地,數(shù)軸上表示數(shù)a的點(diǎn)與原點(diǎn)的距離叫做數(shù)a的絕對值,記做|a|。
例如,上面的問題中|20|=20,|-10|=10顯然,|0|=0這個例子中,第一問是相反意義的量,用正負(fù)數(shù)表示,后一問的解答則與符號沒有關(guān)系,說明實際生活中有些問題,人們只需知道它們的具體數(shù)值,而并不關(guān)注它們所表示的意義。為引入絕對值概念做準(zhǔn)備。使學(xué)生體驗數(shù)學(xué)知識與生活實際的聯(lián)系。因為絕對值概念的幾何意義是數(shù)形轉(zhuǎn)化的典型模型,學(xué)生初次接觸較難接受,所以配置此觀察與思考,為建立絕對值概念作準(zhǔn)備。
。ǘ┖献鹘涣鳌
1、探究規(guī)律例1求下列各數(shù)的絕對值,并歸納求有理數(shù)a的絕對有什么規(guī)律?
-3,5,0,+58,0.6。
2、要求小組討論,合作學(xué)習(xí)。
3、教師引導(dǎo)學(xué)生利用絕對值的意義先求出答案,然后觀察原數(shù)與它的絕對值這兩個數(shù)據(jù)的特征,并結(jié)合相反數(shù)的意義,最后總結(jié)得出求絕對值法則(見教科書第15頁)。
。ㄈ╈柟叹毩(xí):教科書第15頁練習(xí)。
1、其中第1題按法則直接寫出答案,是求絕對值的基本訓(xùn)練;第2題是對相反數(shù)和絕對值概念進(jìn)行辨別,對學(xué)生的分析、判斷能力有較高要求,要注意思考的周密性,要讓學(xué)生體會出不同說法之間的區(qū)別。求一個數(shù)的絕時值的法則,可看做是絕對值概念的一個應(yīng)用,所以安排此例。 學(xué)生能做的盡量讓學(xué)生完成,教師在教學(xué)過程中只是組織者。本著這個理念,設(shè)計這個討論。
2、結(jié)合實際發(fā)現(xiàn)新知引導(dǎo)學(xué)生看教科書第16頁的圖,并回答相關(guān)問題:
。1)把14個氣溫從低到高排列。
。2)把這14個數(shù)用數(shù)軸上的點(diǎn)表示出來。
3、觀察并思考:
。1)觀察這些點(diǎn)在數(shù)軸上的位置,并思考它們與溫度的高低之間的關(guān)系,由此你覺得兩個有理數(shù)可以比較大小嗎?應(yīng)怎樣比較兩個數(shù)的大小呢?
。2)學(xué)生交流后,教師總結(jié):
14個數(shù)從左到右的順序就是溫度從低到高的順序:在數(shù)軸上表示有理數(shù),它們從左到右的順序就是從小到大的順序,即左邊的數(shù)小于右邊的數(shù)。在上面14個數(shù)中,選兩個數(shù)比較,再選兩個數(shù)試試,通過比較,歸納得出有理數(shù)大小比較法則。
4、想象練習(xí):
想象頭腦中有一條數(shù)軸,其上有兩個點(diǎn),分別表示數(shù)-100和-90,體會這兩個點(diǎn)到原點(diǎn)的距離(即它們的絕對值)以及這兩個數(shù)的大小之間的關(guān)系。要求學(xué)生在頭腦中有清晰的圖形。讓學(xué)生體會到數(shù)學(xué)的規(guī)定都來源于生活,每一種規(guī)定都有它的合理性。
數(shù)在大小比較法則第2點(diǎn)學(xué)生較難掌握,要從絕對值的意義和數(shù)軸上的數(shù)左小右大這方面結(jié)合起來來了解,所以配置想象練習(xí) ,加強(qiáng)數(shù)與形的想象。
5、課堂練習(xí)例2,比較下列各數(shù)的大小。(教科書第17頁例)
比較大小的過程要緊扣法則進(jìn)行,注意書寫格式。
6、練習(xí):第18頁練習(xí)。
。ㄈ┬〗Y(jié)與作業(yè)。
課堂小結(jié)怎樣求一個數(shù)的絕對值,怎樣比較有理數(shù)的大小?
。ㄋ模┍菊n作業(yè)。
1、必做題:教產(chǎn)書第19頁習(xí)題1,2,第4,5,6,10
2、選做題:教師自行安排。
五、本課教育評注(課堂設(shè)計理念,實際教學(xué)效果及改進(jìn)設(shè)想)。
1、情景的創(chuàng)設(shè)出于如下考慮:
(1)體現(xiàn)數(shù)學(xué)知識與生活實際的緊密聯(lián)系,讓學(xué)生在這些熟悉的日常生活情境中獲得數(shù)學(xué)體驗,不僅加深對絕對值的理解,更感受到學(xué)習(xí)絕對值概念的必要性和激發(fā)學(xué)習(xí)的.興趣。
。2)教材中數(shù)的絕對值概念是根據(jù)幾何意義來定義的(其本質(zhì)是將數(shù)轉(zhuǎn)化為形來解釋,是難點(diǎn)),然后通過練習(xí)歸納出求有理數(shù)的絕對值的規(guī)律,如果直接給出絕對值的概念,灌輸知識的味道很濃,且太抽象,學(xué)生不易接受。
2、一個數(shù)絕對值的法則,實際上是絕對值概念的直接應(yīng)用,也體現(xiàn)著分類的數(shù)學(xué)思想,所以直接通過例1歸納得出,顯得非常緊湊,是教學(xué)重點(diǎn);從知識的發(fā)展和學(xué)生的能力培養(yǎng)角度來看,教師應(yīng)更重視學(xué)生的自主學(xué)習(xí)和探究的過程,關(guān)注學(xué)生的思維,做好教學(xué)的組織和引導(dǎo),留給學(xué)生足夠的空間。
3、有理數(shù)大小的比較法則是大小規(guī)定的直接歸納,其中第(2)條學(xué)生較難理解,教學(xué)中要結(jié)合絕對值的意義和規(guī)定:在數(shù)軸上表示有理數(shù),它們從左到右的順序就是從小到大的順序,幫助學(xué)生建立數(shù)軸上越左邊的點(diǎn)到原點(diǎn)的距離越大,所以表示的數(shù)越小這個數(shù)形結(jié)合的模型。為此設(shè)置了想象練習(xí)。
4、本節(jié)課的內(nèi)容包括絕對值的概念和數(shù)的絕對值的求法、有理數(shù)大小比較的法則,教學(xué)內(nèi)容很多,學(xué)生接受起來可能會有困難,建議把有理數(shù)的大小比較移到下節(jié)課教學(xué)。
初中數(shù)學(xué)七年級《絕對值》說課稿 10
一、學(xué)習(xí)與導(dǎo)學(xué)目標(biāo):
知識與技能:會求出一個數(shù)的絕對值,能利用數(shù)軸及絕對值的知識,比較兩個有理數(shù)的大小;
過程與方法:經(jīng)歷絕對值概念的形成,初步體會數(shù)形結(jié)合的思想方法,豐富解決問題的策略;
情感態(tài)度:通過創(chuàng)設(shè)情境,初步感悟?qū)W習(xí)絕對值的必要性,促進(jìn)責(zé)任心的形成。
二、學(xué)程與導(dǎo)程活動:
A、創(chuàng)設(shè)情境(幻燈片或掛圖)
1、兩輛汽車,其一向東行駛10km,另一向西行駛8km。為了區(qū)別,可規(guī)定向東行駛為正,則分別記作+10km和-8km。但在計算出租車收費(fèi),汽車行駛所耗的汽油,起主要作用的是汽車行駛的'路程,而不是行駛的方向。此時,行駛路程則分別記作10km和8km。
再如測量誤差問題、排球重量誰更接近標(biāo)準(zhǔn)問題
2、在討論數(shù)軸上的點(diǎn)與原點(diǎn)的距離時,只需要觀察它與原點(diǎn)相隔多少個單位長度,與位于原點(diǎn)何方無關(guān)。
B、學(xué)習(xí)概念:
1、我們把在數(shù)軸上表示數(shù)a的點(diǎn)與原點(diǎn)的距離叫做數(shù)a的絕對值(absolute value),記作︱a︱(幻燈片)。因此,上述+10,-8的絕對值分別是10,8。
如在數(shù)軸上表示數(shù)-6的點(diǎn)和表示數(shù)6的點(diǎn)與原點(diǎn)的距離都是6,所以,-6和6的絕對值都是6,記作︱-6︱=6,︱6︱=6。(互為相反數(shù)的兩個數(shù)的絕對值相同)
2、嘗試回答(1)︱+2︱= ,︱1/5︱= ,︱+8.2︱= ;
(2)︱-3︱= ,︱-0.2︱= ,︱-8.2︱= ;
(3)︱0︱= 。(幻燈片)
思考:你能從中發(fā)現(xiàn)什么規(guī)律?引導(dǎo)學(xué)生得出:(幻燈片)
性質(zhì):一個正數(shù)的絕對值是它本身;
一個負(fù)數(shù)的絕對值是它的相反數(shù);
零的絕對值是零。
如果用字母a表示有理數(shù),上述性質(zhì)可表述為:
當(dāng)a是正數(shù)時,︱a︱=a;
當(dāng)a是負(fù)數(shù)時,︱a︱=-a;
當(dāng)a=0時,︱a︱=0。
解答課本P19/7及P15練習(xí),由P19/7體會絕對值在實際中的應(yīng)用,由練習(xí)1體會上面的三個等式,由練習(xí)2中提到的絕對值大小、數(shù)軸,引出問題:
在引入負(fù)數(shù)以后,如何比較兩個數(shù)的大小,尤其是兩個負(fù)數(shù)的大小?
3、讓我們?nèi)匀换氐綄嶋H中去看看有怎樣的啟發(fā),引導(dǎo)閱讀P16(幻燈片)。
顯然,結(jié)合問題的實際意義不難得到:-4-202。
因此,在數(shù)軸上你有何發(fā)現(xiàn)?生討論后發(fā)現(xiàn):從左往右表示的數(shù)越來越大。
再找?guī)讉量試試是否如此?這些數(shù)的絕對值的大小如何?(可利用P19/6,8為素材)
通過以上探究活動得到:正數(shù)大于0,0大于負(fù)數(shù),正數(shù)大于負(fù)數(shù);
兩個負(fù)數(shù),絕對值大的反而小。
4、師生活動比較下列各對數(shù)的大。篜17例,P18練習(xí)。
5、師生小結(jié)歸納(幻燈片)
三、筆記與板書提綱:
1、 幻燈片
2、 師生板演練習(xí)P15/1
四、練習(xí)與拓展選題:
P19/4,5,9,10
【初中數(shù)學(xué)七年級《絕對值》說課稿】相關(guān)文章:
初中數(shù)學(xué)的說課稿09-19
初中數(shù)學(xué)說課稿03-11
初中數(shù)學(xué)說課稿09-07
初中的數(shù)學(xué)說課稿07-03
數(shù)學(xué)說課稿初中06-07
初中數(shù)學(xué)說課稿精選07-14